rss
email
twitter
facebook

2016年9月13日

進化論的十大問題──當代研究的啟示


關啟文
雖然進化論者不斷否定進化論有甚麼問題,且強調科學家對進化論都不再存疑問,但事實上從科學證據而言,進化論還面對巨大困難。我最近讀了Casey Luskin的一篇文章,對進化論所面對的十大科學困難有詳細分析:The Top Ten Scientific Problems with Biological and Chemical Evolution.” [1] 這文章分析清晰,而且學術資料豐富,很值一讀。我們所出版的智慧設計的當代爭論》對進化論的問題也多有論及,[2]然而所牽涉的資料汗牛充棟,我感到Luskin的文章仍然是很有價值的。[3]然而原文有數十頁,不易消化。因此,本文用中文作一些介紹和撮要,再加些少評語,期望讀者可以之後再細讀Luskin的原文。



十大問題概覽
問題一:沒有可行的機制去產生原始有機湯(Primordial Soup )
問題二:沒有指導的化學過程不能解釋遺傳密碼的起源
問題三:隨機的突變不能產生不能簡約的複雜架構(Irreducibly Complex Structure)所須的遺傳資訊
問題四:自然選擇難以把有利的特徵固定到生物群中
問題五:物種在化石紀錄中的突然出現並不支持達爾文式的進化論。
問題六:分子生物學並不能產生一個統一的宏大「生命樹」。
問題七:趨同進化(Convergent Evolution )摧毀了共同祖先論(Common Ancestry) 的邏輯,這構成達爾文主義的挑戰。
問題八:不同脊髓類動物的胚胎的差異與共同祖先論所預測的有衝突。
問題九:新達爾文主義難以解釋很多物種的地理分佈。
問題十:新達爾文主義關於退化器官(Vestigial Organs) 和垃圾DNA (Junk DNA) 的預測,在悠長的歷史中被證明是不正確的。


問題一:沒有可行的機制去產生原始有機湯(Primordial Soup )
生物進化能發生的先決條件就是化學進化──第一個生命由無生命的物質產生的化學過程,而化學進化一個基本假設就是原始有機湯的存在。1953年,Stanley MillerHarold Urey的實驗被視作原始有機湯的證據。然而:
Ø   Miller-Urey的實驗假設了原始大氣層是還原性的,主要成分是甲烷、氨氣和大量氫氣。但現時的證據指出並非如此,原始大氣層主要成分應是二氧化碳和氮氣。6
Ø   2010年,University College London的生物化學家Nick Lane承認原始有機湯的理論「不能成立」,而且「它已經過時了」。13他的新建議是生命是在海底的一些熱力出口(undersea hydrothermal vents)中誕生的,然而在水中氨基酸和其他有機分子根本不會連結起來而產生蛋白質那類生化分子,這是National Academy of Sciences 也承認的。14相反,水的環境只會令蛋白質更容易分解為氨基酸。因此,化學進化是非常困難的。
問題二:沒有指導的化學過程不能解釋遺傳密碼的起源[4]
究竟如何能由無生命的化學品跨越到第一個可自我複製的生命系統呢?現時一個流行的理論就是「RNA世界」。然而:
Ø   從經驗看,沒有科學家有智慧地指導合成程序,RNA分子根本難以自動形成。
Ø   雖然RNA能為細胞擔任一些角色,但一些蛋白質發揮的一些生命所必須的功能,是RNA不能擔起的。16
Ø   RNA世界的理論不能解釋遺傳資訊的起源。. 第一個RNA大概需要200-300 nucleotides,但並沒有化學或物理定律可決定這些nucleotides的次序──但有正確的次序才能盛載遺傳資訊。18 進化論者能倚賴的只有機遇,但能隨機找到250 nucleotides的正確次序的或然率大概是1 in 10150 --這低於整個宇宙時空能產生的隨機事件。19 20
Ø   這理論也不能解釋遺傳密碼(genetic code)的起源。單單有正確的遺傳資訊仍然與生命無益,我們必須能把遺傳資訊轉化為有功能的蛋白質,但這個轉化過程(如transcriptiontranslation)本身又需要大量蛋白質和分子機器(molecular machines) 然而這些蛋白質和分子機器的產生又是倚靠已經存在的遺傳資訊!這是一個雞與雞蛋的問題。
去解釋以上那點,Luskin使用了一個很好的比喻,就是第一個DVDDVD機的起源。一隻DVD的確充滿資訊(如一套電影),但假若沒有DVD機把這些資訊轉化為圖像與聲音,它一點用也沒有。假設如何製造和使用第一個DVD機的說明書也只是紀錄在DVD中,那我們如何產生整個系統?答案很簡單:智慧設計能同時製造互相配合的DVDDVD機。要有一個生命系統,不單要有正確的遺傳資訊,更要有轉化機制,而且兩者要說同一種語言!若不能發揮功能,自然選擇也無處著力。

2007年,哈佛大學化學家George Whitesides被頒授Priestley Medal──是美國化學家協會的最高榮譽,他發表演說時說:「生命的起源是科學的大問題之一,大部分化學家(包括我自己)相信生命是在無生命的地球的化學混合物中自然產生的。但如何產生?我一點頭緒也沒有。」22
問題三:隨機的突變不能產生不可簡約的複雜架構(Irreducibly Complex Structure)所須的遺傳資訊
生物擁有很多複雜架構,這也需要相應的複雜遺傳資訊,這些資訊真的能按照達爾文理論所言產生嗎?Lehigh University的生化學家Michael Behe指出:假若只須一個突變就能產生某種優勢,進化論面對的問題不大,但若需要多個突變才能產生功能優勢,那「進化」就只會陷於膠著狀態。24然而一個不可簡約的複雜架構需要多個組件同時存在才能發揮功能,所以要產生這些架構也需要多個突變,所以它們的產生是難以用進化論解釋的。
一個例子就是細菌的鞭毛(bacterial flagellum) --一個分子馬達(micromolecular rotary-engine) ,一些實驗顯示,只要缺少了約35個基因之一,它就不能發揮功能。32 Nature Reviews Microbiology的一篇論文承認:「研究鞭毛的群體根本還未開始考慮這些系統是如何產生的。」33但生物的分子機器成千上萬,例如一個研究計劃就在酵母(yeast) 裡找到超過250個新的分子機器。34 不單這些分子機器往往有不可簡約的複雜性,製造這些機器的蛋白質本身也需要多個突變才能產生,這使問題雪上加霜。
有些批評者認為這些所謂低或然率難以量化,或只是建基於沒有實證的假設,然而這方面的實證生物學研究已有不少。20002004年,蛋白質科學家Douglas AxeJournal of Molecular Biology 出版了他的實驗結果,指出一個能有穩定摺疊的蛋白質的或然率約是1 in 1074 ,那絕大多數的蛋白質根本就不能形成穩定結構,更遑論能發揮生物功能了。由於不同有功能的蛋白質有不同摺疊結構,那由一個有功能的蛋白質演化到另一個有功能的蛋白質,很難不經過一些沒有功能的階段,但這些階段卻會被自然選擇淘汰![5]此外,在2004年,BeheUniversity of Pittsburgh的物理學家David Snoke模擬達爾文式的進化論如何產生蛋白質之間的互動,他們發現:若需要的是兩個或以上的突變,整個地球歷史用上也不夠時間。38
2011年,Douglas Axe Ann Gauger嘗試把一個細菌的酵素轉變為另一個相近的酵素,進化論者認為這類改變應該能輕易發生。然而他們發現這改變最少需要七個同步的突變──而這超越了地球歷史能產生的極限。40 以上那種改變雖然相對簡單,但已是這麼困難,那更複雜的改變就更不可能了。GaugerUniversity of Wisconsin, Superior的生物學家Ralph Seelke做了另一個實驗,他們故意破壞了大腸杆菌製造氨基酸tryptophan的基因。他們發現,若破壞只限於一點,那細菌的確能透過隨機突變修復這基因。然而若被破壞的點超過兩個,那達爾文式的進化根本不能令細菌重拾功能41
已去世的生物學家Lynn Margulis曾說:「新突變不會創造新物種,它們只會創造損壞的後代。」另外八百個科學家也持類同觀點。47

問題四:自然選擇難以把有利的特徵固定到生物群中
2008年,16位來自世界各地的生物學家在奧地利的Altenberg開會,探討進化論的問題。科學期刊Nature也有報道這"Altenberg 16"會議,引述一些著名科學家說:「翅膀的起源和生命的登陸. . . 等事情,進化論能告訴我們的非常少。」49我們姑且假設一些突變能產生一些有利生存的新特徵,但若要達成生命的進化,這特徵還要固定到生物群中。進化論者經常假設這是輕如易舉之事,但在真實世界卻沒有那麼簡單。例如一些活在冰天雪地的狐狸本來的毛是棕色的,但後來一隻演化出白毛來,應該是有掩護作用的。然而有很多意外可能發生,例如這隻白狐狸可能斷了腿或被吃掉,那牠的有利基因就不能傳遞下去。所以,不少隨機力量(通稱為遺傳飄移[genetic drift])能輕易把有利突變取消,除非這新特徵帶來的優勢非常巨大。如Indiana University的進化生物學家Michael Lynch說:「隨機的遺傳飄移對分子的改良是強大的障礙。」50 遺傳飄移甚至傾向把一些中性或輕微不利的突變固定下來。51 Lynch指出很多進化論者把自然選擇描繪為一種無所不能的力量,能產任何生物的複雜結構,他卻認為這是神話。56 58Lynch則相信隨機的遺傳飄移才是主要的解釋,但這種觀點又受到嚴厲批評,如Ann Gauger59 和進化論者Jerry Coyne60看來雙方的批評都有道理,無論是自然選擇或遺傳飄移都不能充分解釋生物複雜性的產生。
問題五:物種在化石紀錄中的突然出現並不支持達爾文式的進化論。
達爾文預期化石紀錄應該充滿著物種與物種之間的中介生物,但事實並非如此,所以他在《物種起源》裡也問:「為何不是每一個地質岩層都充斥著這些中介連繫呢?」 66他承認這是進化論要面對的最大問題,而他那時的解釋是訴諸化石紀錄的不完整。然而150年過去了,今天數以千計的物種在化石紀錄中被發現,只有很少數看起來像中介生物。如古生物學家Stephen Jay Gould承認:「在生物設計的主要轉接之間的中介階段,我們並沒有化石證據;事實上在很多情況下,就算在我們的想像中去建構一些功能上中介的生物也很困難,這一直是漸進進化論持久面對的嚴重問題。」68
絕大部分生物都是突然出現,沒有明顯的祖先,而且出現時已相當完整,之後也沒有巨大變化。一些例子如下:
Ø   最有名的當然是寒武紀大爆炸(Cambrian explosion)──各類的動物祖先突然在五億五千萬年前出現。76[6]
Ø   主要魚類的組別的起源。80
Ø   陸地植物的起源。81
Ø   有花的植物(angiosperms) 的起源。82
Ø   很多種哺乳類動物的起源。83
Ø   有關人類的演化,著名進化生物學家Ernst Mayr2004指出:「在Homo, Homo rudolfensisHomo erectus的最早化石,與及Australopithecus之間,存在一個巨大且沒有連接的鴻溝。我們如何解釋這個表面的跳躍呢?並沒有可視作缺環的化石。」92
問題六:分子生物學並不能產生一個統一的宏大「生命樹」。
按進化論的假設,不同物種的生化分子是由祖先漸漸演變而來,所以比較它們相似的程度,應當可以決定他們在演化的系譜上有多接近,這樣就可建構代表演化過程的「生命樹」。生物擁有多種生化分子(如蛋白質、DNA等),但真實的演化過程只有一個,所以我們也可預期,使用不同生物分子去建構的生命樹,大體上也應互相吻合的。然而事實卻非如此,如New Scientist所言:「長久以來建構生命樹就是[生物學家] 的聖杯但今天這個研究計劃已是頹桓敗瓦,被相反的證據撕成碎片。」104
Ø   當生物學家分析三大類生命(bacteriaarchaeaeukarya)時,發覺它們的基因並不能歸納為一顆樹。102
Ø   當這種矛盾在細菌上出現時,進化論者提出基因交換(gene-swapping) 的機制去解釋。然而這類矛盾在較高等的動物中也出現,但牠們之間不多出現基因交換。當微生物學家Michael Syvanen研究不同動物的2000個基因,企圖建構牠們之間的演化關係,但他失敗了,因為不同基因所說的故事互相衝突,不能協調。107到最後Syvanen哀嘆:「我們剛剛殲滅了生命樹了。」108
Ø   一般生命樹認定人與rodents較接近,與大象則較疏遠。然而microRNA基因的分析卻顯示人其實與大象較接近,這類建基於基因比較的生命樹的衝突比比皆是。Dartmouth的生物學家Kevin Peterson說:「我研究了數以千計的microRNA基因,但我找不到一個支持傳統生命樹的例子。... 它們提供的生命樹與所有人希望見到的都截然不同。」111
Ø   就算在同一個物種的基因內,我們用不同基因去建構的生命樹也互不相容。使用不同蛋白質得出的結果亦是互相矛盾。
Ø   除了使用分子分析外,我們亦可透過比較生物的形態(morphology) 去建構生命樹。但兩種方法得出的生命樹亦是經常發生衝突。且是資料愈多,衝突愈嚴重。112例如進化論者經常提到使用酵素cytochrome c所得出的生命樹,與建基於形態的傳統生命樹相當吻合,但其實若建基於cytochrome b,則會得出於傳統生命樹截然不同的結果(如貓與鯨魚都被歸入靈長類),114他們對此卻隻字不提。
面對這些矛盾,進化論者提出了不少臨時的解釋:horizontal gene transfer, long branch attraction, rapid evolution, different rates of evolution, coalescent theory, incomplete sampling, flawed methodology, and convergent evolution,但或許要質疑的是生命樹背後的基本假設,就是所有生物都有一個共同祖先。
問題七:趨同進化(Convergent Evolution )摧毀了共同祖先論(Common Ancestry) 的邏輯,這構成達爾文主義的挑戰。
進化論的一個基本假設,就是生物的相似性反映了來自共同祖先的遺傳資訊。然而我們發現在不少情況下,當兩個物種有一些相似特徵時,這特徵是不可能源自牠們的共同祖先的,這被稱為趨同進化(convergent or parallel evolution)。然而這也意味著,生物的相似性不一定反映共同祖先的遺傳,這即是說進化論的基本假設不是完全正確的。
Ø   科學家研究不同物種的粒線體DNA(mitochondrial DNA, or mtDNA) ,發現一些鳥類的mtDNA與一些疏遠的物種(如蛇與蜥蜴)的mtDNA相當相似,看來這些mtDNA是有「多次獨立的起源」。120
Ø   動物與植物的內在免疫系統的生化組織高度相似,但它們的共同祖先卻沒有這種免疫系統。121
Ø   蝙蝠和鯨魚都有一種回音定位系統(echolocation) ,但它們的共同祖先亦沒有這種系統。不單在形態上趨同,它們的基因亦相當相似。123
Ø   其他趨同進化的例子包括:眼睛的多次出現;脊髓類動物的色素改變;蛋白質的特質;mimicry in butterflies for mutualistic interactionsconvergence of some flower traits in plants等。125
Ø   遺傳上的趨同進化亦有超過100個例子。126
問題八:不同脊髓類動物的胚胎的差異與共同祖先論所預測的有衝突。
進化論者認為,不同脊髓類動物的胚胎發展有巨大相似之處,這與共同祖先論所預測的一致,所以可成為進化論的證據。然而當生物學家經過仔細研究,發現不同脊髓類動物的胚胎發展從最早階段開始就存在差異,與共同祖先論所預測的有所衝突。130 131 132
一些進化論者仍然堅持在一個中間的階段,不同脊髓類動物的胚胎呈現高度相似性,這被稱為phylotypic  stage。然而Anatomy and Embryology 的一個全面研究指出這也不正確,因為那些胚胎在以下幾方面都存在不少差異:身體的大小,身體計劃(body plan) 、生長規律和發展時間表。134
問題九:新達爾文主義難以解釋很多物種的地理分佈。
生物地理學(Biogeography) 被視為支持進化論的重要證據,然而很多不符的例子卻被忽略了:
Ø   南美洲有一種猴子叫platyrrhines,根據形態和分子的分析,進化論者認為牠們是非洲猴子catarrhine的後裔。化石紀錄顯示猴子在南美洲生存了約三千萬年,但地質證據卻顯示南美洲與非洲在一億年前已經分開。137 那究竟非洲的猴子是如何橫渡廣闊的海洋(兩者之間相距程最小2600公里),去到南美洲再演化出新的猴子物種的呢?這實在是一個大難題。140
Ø   一些科學家提出猴子是乘木筏飄洋過海的,但這可能性又多大?而且一定要有兩隻猴子一同渡過,旅程所需的食物和食水又從何而來?這些理論的牽強,實在令人嘆為觀止。我們亦可提問:若飄洋過海這麼容易,為何其他非洲靈長類沒有去到南美洲繁衍,而只有猴子呢?
Ø   其他例子還有:南美洲的蜥蜴和large caviomorph rodentsMadagascar的密蜂、lemurs和其他哺乳類;150 很多海島中出現的大象化石;151 橫跨海島鏈出現的淡水青蛙。152
問題十:新達爾文主義關於退化器官(Vestigial Organs) 和垃圾DNA (Junk DNA) 的預測,在悠長的歷史中被證明是不正確的。
1925年,進化生物學家Horatio Hackett Newman認為人體中有超過180個退化器官,但隨著日子過去,一個又一個的「退化器官」的功能和目的都被發現。New Scientist 2008的報告指出今天「生物學家根本非常害怕談及退化器官。」158 進化論者又把這種思維應用到基因上,因為只有2%的人類基因是用來製造蛋白質的,他們就認為餘下的98%大多是垃圾基因,是進化歷程的遺物。 然而今天很多所謂「垃圾基因」的功能已被找出來。
Ø   人類基因中有一些不斷重覆的元素,一直被認為是「垃圾」,然而生物學家Richard SternbergAnnals of the New York Academy of Sciences指出,這些重覆DNA(SINE)的功能包括:形成更高層次的細胞核結構、centromerestelomeres等;協助細胞繁衍;基因的翻譯;DNA修補等。168
Ø   LINE Alu也是一些不斷重覆的DNA,亦找到它們的一些功能。171 172 甚至有論文提出Alu 元妻可能與腦功能的發展有關。173
Ø   各種不牽涉於製造蛋白質的DNA的功能包括:修補DNA174 協助DNA複製;175 規管DNAtranscription176 協助染色體的摺疊和維持;177 控制RNA的編輯和切開;178 協助抵抗疾病;179 規管胚胎發展。180
Ø   2012年,Nature報道了一個多年的研究計劃叫ENCODE ,超過400個科學家參與其中,他們的目的就是研究不牽涉於製造蛋白質的DNA的功能。ENCODE的主要報告說:「這些資料讓我們能指定80%的基因庫的生化功能,特別在那些製造蛋白質的區域以外的DNA。」182事實上ENCODE 只研究了147種細胞,但人體擁有數千種細胞,所以有功能的DNA「可能會超過80%,而達到100%。」183
Ø   另一些被視為「垃圾」叫pseudogenes,然而我們發現它們也與基因表達的調節相關,與癌症起源的研究也息息相關。190 192 195
當然,我們還未完全明白基因庫的功能,但現在科研的趨勢是:我們愈仔細研究所謂「垃圾基因」,我們愈加發現它們的功能。其實「垃圾基因」的概念源自達爾文式的進化論,在過往幾十年是生物學的主流範式(paradigm) ,很多生物學家都不敢質疑,所以只有少數科學家去研究它們的功能。由此看來,進化論的框框實在窒礙了生物學的發展。

結語
當然,進化論的爭論是異常複雜的,所以我無意說單憑以上資料,進化論已被百分百否證。面對以上的難題,進化論者也會提出多種解釋和回應。這些回應是否足夠,還須深入探討,然而坊間往往對進化論的問題缺乏認識,而一些「護教學家」對進化論的批評則有時流於表面,所以我希望能介紹一些有扎實學術基礎的批評,一方面突破一些進化論者製造的假象,另一方面也要提昇批評進化論的論述的質素(參以下的學術參考資料)。我多年來對這問題相當關注,也相信以上進化論的十大問題的確令進化論的可信性大幅減低,然而我們在提出這些主張時,應堅持學術和理性的態度,我們還需要做的工夫有很多。
References Cited:
[6.] David W. Deamer, "The First Living Systems: a Bioenergetic Perspective," Microbiology & Molecular Biology Reviews, 61:239 (1997).
[16.] See Stephen C. Meyer, Signature in the Cell: DNA and the Evidence for Intelligent Design, p. 304 (New York: HarperOne, 2009).
[18.] Michael Polanyi, "Life's Irreducible Structure," Science, 160 (3834): 1308-1312 (June 21, 1968).
[19.] See William A. Dembski, The Design Inference: Eliminating Chance through Small Probabilities (Cambridge University Press, 1998).
[22.] George M. Whitesides, "Revolutions In Chemistry: Priestley Medalist George M. Whitesides' Address," Chemical and Engineering News, 85: 12-17 (March 26, 2007).
[24.] See Michael Behe, "Is There an 'Edge' to Evolution?" at http://www.faithandevolution.org/debates/is-there-an-edge-to-evolution.php
[32.] These experiments have been done on flagella in E. coli and S. typhimurium. See Transcript of Testimony of Scott Minnich, pp. 103-112, Kitzmiller et al. v. Dover Area School Board, No. 4:04-CV-2688 (M.D. Pa., Nov. 3, 2005). Other experimental studies have identified over 30 proteins necessary to form flagella. See Table 1. in Robert M. Macnab, "Flagella," in Escheria Coli and Salmonella Typhimurium: Cellular and Molecular Biology Vol 1, pp. 73-74, Frederick C. Neidhart, John L. Ingraham, K. Brooks Low, Boris Magasanik, Moselio Schaechter, and H. Edwin Umbarger, eds., (Washington D.C.: American Society for Microbiology, 1987).
[33.] Mark Pallen and Nicholas Matzke, "From The Origin of Species to the Origin of Bacterial Flagella," Nature Reviews Microbiology, 4:788 (2006).
[36.] Douglas A. Axe, "Estimating the Prevalence of Protein Sequences Adopting Functional Enzyme Folds," Journal of Molecular Biology, 341: 1295-1315 (2004); Douglas A. Axe, "Extreme Functional Sensitivity to Conservative Amino Acid Changes on Enzyme Exteriors," Journal of Molecular Biology, 301: 585-595 (2000).
[38.] Michael Behe and David Snoke, "Simulating Evolution by Gene Duplication of Protein Features That Require Multiple Amino Acid Residues," Protein Science, 13: 2651-2664 (2004).
[40.] Ann Gauger and Douglas Axe, "The Evolutionary Accessibility of New Enzyme Functions: A Case Study from the Biotin Pathway," BIO-Complexity, 2011 (1): 1-17.
[41.] Ann Gauger, Stephanie Ebnet, Pamela F. Fahey, and Ralph Seelke, "Reductive Evolution Can Prevent Populations from Taking Simple Adaptive Paths to High Fitness," BIO-Complexity, 2010 (2): 1-9.
[44.] Lynn Margulis, quoted in Darry Madden, UMass Scientist to Lead Debate on Evolutionary Theory, Brattleboro (Vt.) Reformer (February 3, 2006).
 [47.] See "A Scientific Dissent from Darwinism" at http://www.dissentfromdarwin.org/
[49.] Scott Gilbert, Stuart Newman, and Graham Budd quoted in John Whitfield, "Biological theory: Postmodern evolution?" Nature, 455: 281-284 (September 17, 2008).
[50.] Michael Lynch, "Evolutionary layering and the limits to cellular perfection," Proceedings of the U.S. National Academy of Sciences, www.pnas.org/cgi/doi/10.1073/pnas.1216130109 (2012).
[51.] Michael Lynch, "The frailty of adaptive hypotheses for the origins of organismal complexity," Proceedings of the U.S. National Academy of Sciences, 104: 8597-8604 (May 15, 2007).
[56.] Michael Lynch, "The evolution of genetic networks by non-adaptive processes," Nature Reviews Genetics, 8:803-813 (October, 2007).
[58.] Michael Lynch, "The frailty of adaptive hypotheses for the origins of organismal complexity," Proceedings of the U.S. National Academy of Sciences, 104: 8597-8604 (May 15, 2007).
[59.] Ann Gauger, "The Frailty of the Darwinian Hypothesis, Part 2," Evolution News & Views (July 14, 2009), at http://www.evolutionnews.org/2009/07/the_frailty_of_the_darwinian_h_1022911.html
[60.] Jerry A. Coyne, Why Evolution is True, p. 123 (Viking, 2009).
[68.] Stephen Jay Gould, "Is a new and general theory of evolution emerging?" Paleobiology, 6(1): 119-130 (1980).
[76.] R.S.K. Barnes, P. Calow and P.J.W. Olive, The Invertebrates: A New Synthesis, pp. 9-10 (3rd ed., Blackwell Sci. Publications, 2001).
[80.] Arthur N. Strahler, Science and Earth History: The Evolution/Creation Controversy, pp. 408-409 (New York: Prometheus Books, 1987).
[81.] Richard M. Bateman, Peter R. Crane, William A. DiMichele, Paul R. Kenrick, Nick P. Rowe, Thomas Speck, and William E. Stein, "Early Evolution of Land Plants: Phylogeny, Physiology, and Ecology of the Primary Terrestrial Radiation," Annual Review of Ecology and Systematics, 29: 263-292 (1998).
[82.] Stefanie De Bodt, Steven Maere, and Yves Van de Peer, "Genome duplication and the origin of angiosperms," Trends in Ecology and Evolution, 20:591-597 (2005).
[83.] Niles Eldredge, The Monkey Business: A Scientist Looks at Creationism (New York: Washington Square Press, 1982), 65.
[92.] Ernst Mayr, What Makes Biology Unique?, p. 198 (Cambridge University Press, 2004).
[102.] Graham Lawton, "Why Darwin was wrong about the tree of life," New Scientist (January 21, 2009).
[104.] Partly quoting Eric Bapteste, in Lawton, "Why Darwin was wrong about the tree of life" (internal quotations omitted).
[108.] Michael Syvanen, quoted in Lawton, "Why Darwin was wrong about the tree of life."
[111.] Elie Dolgin, "Rewriting Evolution," Nature, 486: 460-462 (June 28, 2012).
[112.] Liliana M. Dávalos, Andrea L. Cirranello, Jonathan H. Geisler, and Nancy B. Simmons, "Understanding phylogenetic incongruence: lessons from phyllostomid bats," Biological Reviews of the Cambridge Philosophical Society, 87:991-1024 (2012).
[113.] For example, see BSCS Biology: A Molecular Approach (Glencoe/McGraw Hill, 2006), 227; Sylvia S. Mader, Jeffrey A. Isaacson, Kimberly G. Lyle-Ippolito, Andrew T. Storfer, Inquiry Into Life, 13th ed. (McGraw Hill, 2011), 550.
[120.] David P. Mindell, Michael D. Sorenson, and Derek E. Dimcheff, "Multiple independent origins of mitochondrial gene order in birds," Proceedings of the National Academy of Sciences USA, 95 (September, 1998): 10693-10697.
[121.] Frederick M Ausubel, "Are innate immune signaling pathways in plants and animals conserved?," Nature Immunology, 6 (10): 973-979 (October, 2005).
[123.] Ying Li, Zhen Liu, Peng Shi, and Jianzhi Zhang, "The hearing gene Prestin unites echolocating bats and whales," Current Biology, 20(2):R55-R56 (January, 2010) (internal citations removed).
[126.] See Fazale Rana, The Cell's Design: How Chemistry Reveals the Creator's Artistry, pp. 207-214 (Baker Books, 2008).
[130.] For example, one paper states "Recent workers have shown that early development can vary quite extensively, even within closely related species, such as sea urchins, amphibians, and vertebrates in general. By early development, I refer to those stages from fertilization through neurolation (gastrulation for such taxa as sea urchins, which do not undergo neurulation). Elinson (1987) has shown how such early stages as initial cleavages and gastrula can vary quite extensively across vertebrates." Andres Collazo, "Developmental Variation, Homology, and the Pharyngula Stage," Systematic Biology, 49 (2000): 3 (internal citations omitted). Another paper states, "According to recent models, not only is the putative conserved stage followed by divergence, but it is preceded by variation at earlier stages, including gastrulation and neurulation. This is seen for example in squamata, where variations in patterns of gastrulation and neurulation may be followed by a rather similar somite stage. Thus the relationship between evolution and development has come to be modelled as an 'evolutionary hourglass.'" Michael K. Richardson et al., "There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development," Anatomy and Embryology, 196:91-106 (1997) (internal citations omitted).
[131.] Kalinka et al., "Gene expression divergence recapitulates the developmental hourglass model," Nature, 468:811 (December 9, 2010) (internal citations removed).
[132.] Brian K. Hall, "Phylotypic stage or phantom: is there a highly conserved embryonic stage in vertebrates?," Trends in Ecology and Evolution, 12(12): 461-463 (December, 1997).
[133.] Michael K. Richardson et al., "There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development," Anatomy and Embryology, 196:91-106 (1997).
[134.] Michael K. Richardson et al., "There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development," Anatomy and Embryology, 196:91-106 (1997). See also Steven Poe and Marvalee H. Wake, "Quantitative Tests of General Models for the Evolution of Development," The American Naturalist, 164 (September, 2004): 415-422; Michael K. Richardson, "Heterochrony and the Phylotypic Period," Developmental Biology, 172 (1995): 412-421; Olaf R. P. Bininda-Emonds, Jonathan E. Jeffery, and Michael K. Richardson, "Inverting the hourglass: quantitative evidence against the phylotypic stage in vertebrate development," Proceedings of the Royal Society of London, B, 270 (2003): 341-346;
[135.] Michael K. Richardson et al., "There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development," Anatomy and Embryology, 196:91-106 (1997).
[136.] Olaf R. P. Bininda-Emonds, Jonathan E. Jeffery, and Michael K. Richardson, "Inverting the hourglass: quantitative evidence against the phylotypic stage in vertebrate development," Proceedings of the Royal Society of London, B, 270:341-346 (2003) (emphases added). See also Steven Poe and Marvalee H. Wake, "Quantitative Tests of General Models for the Evolution of Development," The American Naturalist, 164 (3):415-422 (September 2004).
[137.] Alfred L Rosenberger and Walter Carl Hartwig, "New World Monkeys," Encyclopedia of Life Sciences (Nature Publishing Group, 2001).
[138.] Carlos G. Schrago and Claudia A. M. Russo, "Timing the origin of New World monkeys," Molecular Biology and Evolution, 20(10):1620--1625 (2003); John J. Flynn and A.R. Wyss, "Recent advances in South American mammalian paleontology," Trends in Ecology and Evolution, 13(11):449-454 (November, 1998); C. Barry Cox & Peter D. Moore, Biogeography: An Ecological and Evolutionary Approach, p. 185 (Blackwell Science, 1993).
[139.] Adrienne L. Zihlman, The Human Evolution Coloring Book, pp. 4-11 (Harper Collins, 2000).
[140.] John G. Fleagle and Christopher C. Gilbert, "The Biogeography of Primate Evolution: The Role of Plate Tectonics, Climate and Chance," in Primate Biogeography: Progress and Prospects, pp. 393-394 (Shawn M. Lehman and John G. Fleagle, eds., Springer, 2006) (emphasis added).
[141.] Walter Carl Hartwig, "Patterns, Puzzles and Perspectives on Platyrrhine Origins," in Integrative Paths to the Past: Paleoanthropological Advances in Honor of F. Clark Howell, p. 69 (Edited by Robert S. Corruccini and Russell L. Ciochon, Prentice Hall, 1994).
[142.] Adrienne L. Zihlman, The Human Evolution Coloring Book, pp. 4-11 (Harper Collins, 2000).
[143.] John G. Fleagle and Christopher C. Gilbert, "The Biogeography of Primate Evolution: The Role of Plate Tectonics, Climate and Chance," in Primate Biogeography: Progress and Prospects, p. 394 (Shawn M. Lehman and John G. Fleagle, eds., Springer, 2006) (emphasis added).
[144.] Ibid. at 394-395 (emphasis added).
[145.] Ibid. at 404.
[146.] Ibid. at 403-404.
[147.] Walter Carl Hartwig, "Patterns, Puzzles and Perspectives on Platyrrhine Origins," in Integrative Paths to the Past: Paleoanthropological Advances in Honor of F. Clark Howell, pp. 76, 84 (Edited by Robert S. Corruccini and Russell L. Ciochon, Prentice Hall, 1994).
[148.] John G. Fleagle and Christopher C. Gilbert, "The Biogeography of Primate Evolution: The Role of Plate Tectonics, Climate and Chance," in Primate Biogeography: Progress and Prospects, p. 395 (Shawn M. Lehman and John G. Fleagle, eds., Springer, 2006).
[149.] John C. Briggs, Global Biogeography, p. 93 (Elsevier Science, 1995).
[150.] Susan Fuller, Michael Schwarz, and Simon Tierney, "Phylogenetics of the allodapine bee genus Braunsapis: historical biogeography and long-range dispersal over water," Journal of Biogeography, 32:2135--2144 (2005); Anne D. Yoder, Matt Cartmill, Maryellen Ruvolo, Kathleen Smith, and Rytas Vilgalys, "Ancient single origin of Malagasy primates." Proceedings of the National Academy of Sciences USA, 93:5122-- 5126 (May, 1996); Peter M. Kappeler, "Lemur Origins: Rafting by Groups of Hibernators?," Folia Primatol, 71:422--425 (2000); Christian Roos, Jürgen Schmitz, and Hans Zischler, "Primate jumping genes elucidate strepsirrhine phylogeny," Proceedings of the National Academy of Sciences USA, 101: 10650--10654 (July 20, 2004); Philip D. Rabinowitz & Stephen Woods, "The Africa--Madagascar connection and mammalian migrations," Journal of African Earth Sciences, 44:270--276 (2006); Anne D. Yoder, Melissa M. Burns, Sarah Zehr, Thomas Delefosse, Geraldine Veron, Steven M. Goodman, & John J. Flynn, "Single origin of Malagasy Carnivora from an African ancestor," Nature, 421:734-777 (February 13, 2003).
[151.] Richard John Huggett, Fundamentals of Biogeography, p. 60 (Routledge, 1998).
[152.] G. John Measey, Miguel Vences, Robert C. Drewes, Ylenia Chiari, Martim Melo, and Bernard Bourles, "Freshwater paths across the ocean: molecular phylogeny of the frog Ptychadena newtoni gives insights into amphibian colonization of oceanic islands," Journal of Biogeography, 34: 7-20 (2007).
[158.] Laura Spinney, "Vestigial organs: Remnants of evolution," New Scientist, 2656 (May 14, 2008), at http://www.newscientist.com/article/mg19826562.100-vestigial-organs-remnants-of-evolution.html
[168.] Richard Sternberg, "On the Roles of Repetitive DNA Elements in the Context of a Unified Genomic- Epigenetic System," Annals of the New York Academy of Sciences, 981 (2002): 154-88.
[171.] Tammy A. Morrish, Nicolas Gilbert, Jeremy S. Myers, Bethaney J. Vincent, Thomas D. Stamato, Guillermo E. Taccioli, Mark A. Batzer, and John V. Mora "DNA repair mediated by endonuclease-independent LINE-1 retrotransposition," Nature Genetics, 31 (June, 2002): 159-65.
[172.] Galit Lev-Maor, Rotem Sorek, Noam Shomron, and Gil Ast, "The birth of an alternatively spliced exon: 3' splice-site selection in Alu exons," Science, 300 (May 23, 2003): 1288-91; Wojciech Makalowski, "Not junk after all," Science, 300 (May 23, 2003): 1246-47.
[173.] Nurit Paz-Yaacova, Erez Y. Levanonc, Eviatar Nevod, Yaron Kinare, Alon Harmelinf, Jasmine Jacob-Hirscha, Ninette Amariglioa, Eli Eisenbergg, and Gideon Rechavi, "Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates," Proceedings of the National Academy of Sciences USA, 107 (July 6, 2010): 12174-79.
[174.] Morrish et al., "DNA repair mediated by endonuclease-independent LINE-1 retrotransposition," 159-65; Annie Tremblay, Maria Jasin, and Pierre Chartrand, "A Double-Strand Break in a Chromosomal LINE Element Can Be Repaired by Gene Conversion with Various Endogenous LINE Elements in Mouse Cells," Molecualr and Cellular Biology, 20 (January, 2000): 54-60; Ulf Grawunder, Matthias Wilm, Xiantuo Wu, Peter Kulesza, Thomas E. Wilson, Matthias Mann, and Michael R. Lieber, "Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells," Nature, 388 (July 31, 1997): 492-95; Thomas E. Wilson, Ulf Grawunder, and Michael R. Lieber, "Yeast DNA ligase IV mediates non-homologous DNA end joining," Nature, 388 (July 31, 1997): 495-98.
[175.] Richard Sternberg and James A. Shapiro, "How repeated retroelements format genome function," Cytogenetic and Genome Research, 110 (2005): 108-16.
[176.] Jeffrey S. Han, Suzanne T. Szak, and Jef D. Boeke, "Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes," Nature, 429 (May 20, 2004): 268-74; Bethany A. Janowski, Kenneth E. Huffman, Jacob C. Schwartz, Rosalyn Ram, Daniel Hardy, David S. Shames, John D. Minna, and David R. Corey, "Inhibiting gene expression at transcription start sites in chromosomal DNA with antigene RNAs," Nature Chemical Biology, 1 (September, 2005): 216-22; J. A. Goodrich, and J. F. Kugel, "Non-coding-RNA regulators of RNA polymerase II transcription," Nature Reviews Molecular and Cell Biology, 7 (August, 2006): 612-16; L.C. Li, S. T. Okino, H. Zhao, H., D. Pookot, R. F. Place, S. Urakami, H. Enokida, and R. Dahiya, "Small dsRNAs induce transcriptional activation in human cells," Proceedings of the National Academy of Sciences USA, 103 (November 14, 2006): 17337-42; A. Pagano, M. Castelnuovo, F. Tortelli, R. Ferrari, G. Dieci, and R. Cancedda, "New small nuclear RNA gene-like transcriptional units as sources of regulatory transcripts," PLoS Genetics, 3 (February, 2007): e1; L. N. van de Lagemaat, J. R. Landry, and D. L. Mager, P. Medstrand, "Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions," Trends in Genetics, 19 (October, 2003): 530-36; S. R. Donnelly, T. E. Hawkins, and S. E. Moss, "A Conserved nuclear element with a role in mammalian gene regulation," Human Molecular Genetics, 8 (1999): 1723-28; C. A. Dunn, P. Medstrand, and D. L. Mager, "An endogenous retroviral long terminal repeat is the dominant promoter for human B1,3- galactosyltransferase 5 in the colon," Proceedings of the National Academy of Sciences USA, 100 (October 28, 2003):12841-46; B. Burgess-Beusse, C. Farrell, M. Gaszner, M. Litt, V. Mutskov, F. Recillas-Targa, M. Simpson, A. West, and G. Felsenfeld, "The insulation of genes from external enhancers and silencing chromatin," Proceedings of the National Academy of Sciences USA, 99 (December 10, 2002): 16433-37; P. Medstrand, Josette-Renée Landry, and D. L. Mager, "Long Terminal Repeats Are Used as Alternative Promoters for the Endothelin B Receptor and Apolipoprotein C-I Genes in Humans," Journal of Biological Chemistry, 276 (January 19, 2001): 1896-1903; L. Mariño-Ramíreza, K.C. Lewisb, D. Landsmana, and I.K. Jordan, "Transposable elements donate lineage-specific regulatory sequences to host genomes," Cytogenetic and Genome Research, 110 (2005):333-41.
[177.] S. Henikoff, K. Ahmad, H. and S. Malik "The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA," Science, 293 (August 10, 2001): 1098-1102; C. Bell, A. G. West, and G. Felsenfeld, "Insulators and Boundaries: Versatile Regulatory Elements in the Eukaryotic Genome," Science, 291 (January 19, 2001): 447-50; M.-L. Pardue and P.G. DeBaryshe, "Drosophila telomeres: two transposable elements with important roles in chromosomes," Genetica, 107 (1999): 189-96; S. Henikoff, "Heterochromatin function in complex genomes," Biochimica et Biophysica Acta, 1470 (February, 2000): O1-O8; L. M.Figueiredo, L. H. Freitas-Junior, E. Bottius, Jean-Christophe Olivo-Marin, and A. Scherf, "A central role for Plasmodium falciparum subtelomeric regions in spatial positioning and telomere length regulation," The EMBO Journal, 21 (2002): 815-24; Mary G. Schueler, Anne W. Higgins, M. Katharine Rudd, Karen Gustashaw, and Huntington F. Willard, "Genomic and Genetic Definition of a Functional Human Centromere," Science, 294 (October 5, 2001): 109-15.
[178.] Ling-Ling Chen, Joshua N. DeCerbo, and Gordon G. Carmichael, "Alu element-mediated gene silencing," The EMBO Journal 27 (2008): 1694-1705; Jerzy Jurka, "Evolutionary impact of human Alu repetitive elements," Current Opinion in Genetics & Development, 14 (2004): 603-8; G. Lev-Maor et al. "The birth of an alternatively spliced exon: 3' splice-site selection in Alu exons," 1288-91; E. Kondo-Iida, K. Kobayashi, M. Watanabe, J. Sasaki, T. Kumagai, H. Koide, K. Saito, M. Osawa, Y. Nakamura, and T. Toda, "Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD)," Human Molecular Genetics, 8 (1999): 2303-09; John S. Mattick and Igor V. Makunin, "Non-coding RNA," Human Molecular Genetics, 15 (2006): R17-R29.
[179.] M. Mura, P. Murcia, M. Caporale, T. E. Spencer, K. Nagashima, A. Rein, and M. Palmarini, "Late viral interference induced by transdominant Gag of an endogenous retrovirus," Proceedings of the National Academy of Sciences USA, 101 (July 27, 2004): 11117-22; M. Kandouz, A. Bier, G. D Carystinos, M. A Alaoui-Jamali, and G. Batist, "Connexin43 pseudogene is expressed in tumor cells and inhibits growth," Oncogene, 23 (2004):4763-70.
[180.] K. A. Dunlap, M. Palmarini, M. Varela, R. C. Burghardt, K. Hayashi, J. L. Farmer, and T. E. Spencer, "Endogenous retroviruses regulate periimplantation placental growth and differentiation," Proceedings of the National Academy of Sciences USA, 103 (September 26, 2006):14390-95; L. Hyslop, M. Stojkovic, L. Armstrong, T. Walter, P. Stojkovic, S. Przyborski, M. Herbert, A. Murdoch, T. Strachan, and M. Lakoa, "Downregulation of NANOG Induces Differentiation of Human Embryonic Stem Cells to Extraembryonic Lineages," Stem Cells, 23 (2005): 1035-43; E. Peaston, A. V. Evsikov, J. H. Graber, W. N. de Vries, A. E. Holbrook, D. Solter, and B. B. Knowles, "Retrotransposons Regulate Host Genes in Mouse Oocytes and Preimplantation Embryos," Developmental Cell, 7 (October, 2004): 597-606.
[182.] The ENCODE Project Consortium, "An integrated encyclopedia of DNA elements in the human genome," Nature, 489:57-74 (September 6, 2012).
[183.] Ewan Birney, quoted in Ed Yong, "ENCODE: the rough guide to the human genome," Discover Magazine (September 5, 2012), at http://blogs.discovermagazine.com/notrocketscience/2012/09/05/encode-the-rough-guide-to-the-human-genome/
[190.] Laura Poliseno, "Pseudogenes: Newly Discovered Players in Human Cancer," Science Signaling, 5 (242) (September 18, 2012).
[192.] See for example D. Zheng and M. B. Gerstein, "The ambiguous boundary between genes and pseudogenes: the dead rise up, or do they?," Trends in Genetics, 23 (May, 2007): 219-24; S. Hirotsune et al., "An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene," Nature, 423 (May 1, 2003): 91-96; O. H. Tam et al., "Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes," Nature, 453 (May 22, 2008): 534-38; D. Pain et al., "Multiple Retropseudogenes from Pluripotent Cell-specific Gene Expression Indicates a Potential Signature for Novel Gene Identification," The Journal of Biological Chemistry, 280 (February 25, 2005):6265-68; J. Zhang et al., "NANOGP8 is a retrogene expressed in cancers," FEBS Journal, 273 (2006): 1723-30.
[194.] Ryan Charles Pink, Kate Wicks, Daniel Paul Caley, Emma Kathleen Punch, Laura Jacobs, and David Paul Francisco Carter, "Pseudogenes: Pseudo-functional or key regulators in health and disease?," RNA, 17 (2011): 792-98.
[195.] Yan-Zi Wen, Ling-Ling Zheng, Liang-Hu Qu, Francisco J. Ayala and Zhao-Rong Lun, "Pseudogenes are not pseudo any more," RNA Biology, 9(1):27-32 (January, 2012).




[1] http://www.discovery.org/a/24041,這文章收集於Robert Stackpole and Paul Brown, eds., More than Myth (Chartwell Press, 2014).
[2] 關啟文、陳海智、湯靈磐、譚振基編,《智慧設計的當代爭論》,香港:天道書樓,20147月。
[3] 另參Michael Denton’s Evolution: Still a Theory in Crisis (Seattle: Discovery Institute Press, 2016)
[4] 有關生命與遺傳資訊的起源,請參Stephen C. Meyer, Signature in the Cell: DNA and the Evidence for Intelligent Design (New York: HarperOne, 2009) 。此書有詳盡的討論,已有中譯本:史蒂芬.梅爾著,唐理明等譯,《細胞中的印記:DNA編碼信息之謎》,北京:團結出版社,2012
[5] Douglas Axe是另一個對進化論批判的生物學家,他最近更全面維護智慧設計,參他的新書:Douglas Axe, Undeniable: How Biology Confirms Our Intuition That Life Is Designed (New York: HarperOne, 2016)
[6] 有關這方面的研究和爭論,可參Stephen Meyer’s Darwin’s Doubt: The Explosive Origin of Animal Life & the Case for Intelligent Design (New York: HarperOne, 2013),他在此書中批判地檢視了進化論者對寒武紀大爆炸的諸種解釋,也引起了不少爭議。Meyer及其盟友也作出了回應:David Klinghoffer, ed., Debating Darwin’s Doubt: A Scientific Controversy That Can No Longer Be Denied (Seattle: Discovery Institute, 2015)